Kernel Methods Toolbox
The Kernel Methods Toolbox (KMBOX) is a collection of MATLAB programs that implement kernel-based algorithms, with a focus on regression algorithms and online algorithms. It can be used for nonlinear signal processing and machine learning.
KMBOX includes implementations of algorithms such as kernel principal component analysis (KPCA), kernel canonical correlation analysis (KCCA) and kernel recursive least-squares (KRLS).
The goal of this distribution is to provide easy-to-analyze algorithm implementations, which reveal the inner mechanics of each algorithm and allow for quick modifications. The focus of these implementations is therefore on readability rather than speed or memory usage.
The basis of this toolbox was a set of programs written for the Ph.D. Thesis "Kernel Methods for Nonlinear Identification, Equalization and Separation of Signals".
Template files are provided to encourage external authors to include their own code into the toolbox.
引用格式
Steven Van Vaerenbergh (2024). Kernel Methods Toolbox (https://github.com/steven2358/kmbox), GitHub. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!demo
lib
无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.2.0.0 | update description |
|
|
1.0.0.0 |
|