Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers

版本 1.0.0.0 (462.6 KB) 作者: Janos Abonyi
Each rule can represent more than one classes with different probabilities
1.0K 次下载
更新时间 2014/7/11

查看许可证

The classical fuzzy classifier consists of rules each one describing one of the classes. In this paper a new fuzzy model structure is proposed where each rule can represent more than one classes with different probabilities. The obtained classifier can be considered as an extension of the quadratic Bayes classifier that utilizes mixture of models for estimating the class conditional densities. A supervised clustering algorithm has been worked out for the identification of this fuzzy model. The relevant input variables of the fuzzy classifier have been selected based on the analysis of the clusters by Fisher's interclass separability criteria. This new approach is applied to the well-known wine and Wisconsin Breast Cancer classification problems.

It is also desribed in:
J. Abonyi, F. Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers, Pattern Recognition Letters, 24(14) 2195-2207, October 2003

For more MATLAB tools please visit:
http://www.abonyilab.com/software-and-data

引用格式

Janos Abonyi (2024). Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers (https://www.mathworks.com/matlabcentral/fileexchange/47203-supervised-fuzzy-clustering-for-the-identification-of-fuzzy-classifiers), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R14SP1
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0