Chaos theory and meta-heuristics

10 chaotic maps that can be integrated to any meta-heuristics
2.9K 次下载
更新时间 2018/5/22

查看许可证

You can simply use any of these chaotic maps when you need a random number in [0 1] in your meta-heuristic. The maps are:
Chebyshev map
Circle map
Gauss/mouse map
Iterative map
Logistic map
Piecewise map
Sine map
Singer map
Sinusoidal map
Tent map
Details can be found in the following reference:
S. Saremi, S. Mirjalili, A. Lewis, Biogeography-based optimisation with chaos, Neural Computing and Applications, In press, 2014, Springer,

You can download the paper here: http://dx.doi.org/10.1007/s00521-014-1597-x

*********************************************************************************************************************************************
A course on “Optimization Problems and Algorithms: how to understand, formulation, and solve optimization problems”:
https://www.udemy.com/optimisation/?couponCode=MATHWORKSREF

A course on “Introduction to Genetic Algorithms: Theory and Applications”
https://www.udemy.com/geneticalgorithm/?couponCode=MATHWORKSREF
*********************************************************************************************************************************************

引用格式

Seyedali Mirjalili (2024). Chaos theory and meta-heuristics (https://www.mathworks.com/matlabcentral/fileexchange/47215-chaos-theory-and-meta-heuristics), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2014a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Particle Swarm 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.1.0.0

Typo fixed
Just the image was upadted.

1.0.0.0