Least Mean Square for System Identification
Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean squares of the error signal (difference between the desired and the actual signal).
The weights update Formula for every Iteration is Wt new=Wt old + mu * error *input;
For Example:
inp=wavread('BlueFunk-bass1.wav');
inp=inp-(min(inp)); % required for audio signals
h=[1 -4 6 -5 2]; % Known System papametes for a low Pass filter h
Iter=lms(inp,h,100,5,1);
Author:Santhana Raj.A https://sites.google.com/site/santhanarajarunachalam/
引用格式
Santhana Raj (2025). Least Mean Square for System Identification (https://ww2.mathworks.cn/matlabcentral/fileexchange/47790-least-mean-square-for-system-identification), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0.0 |