Point vortex dynamics simulation

版本 1.2.0.0 (8.9 KB) 作者: Tom Ashbee
Integration of N 2D point vortices in a cylinder, using an adaptive 4th order Runge-Kutta scheme.
810.0 次下载
更新时间 2015/3/22

查看许可证

The point vortex model was introduced by Helmholtz in 1867 and it was subsequently proved by Lin in 1942 that the motion of N vortices in a bounded domain is a Hamiltonian system (sometime called the `Kirchhoff-Routh path function'). The statistical mechanics of the N vortices is remarkable due to the fact that the system exhibits negative temperature.
The integrator used is a custom adaptive 4th order Runge-Kutta scheme which ensures the convergence of vortex positions to below a tolerance parameter before advancing to the next time step. In this way the energy and angular momentum of the system (the only two invariants) are conserved to high precision.

引用格式

Tom Ashbee (2024). Point vortex dynamics simulation (https://www.mathworks.com/matlabcentral/fileexchange/49103-point-vortex-dynamics-simulation), MATLAB Central File Exchange. 检索来源 .

MATLAB 版本兼容性
创建方式 R2013a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Fluid Dynamics 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.2.0.0

Similar to the previous update, the double sum in the energy (energy.m) has been completely replaced by vector operations. Gives O(2) speed up in energy calc (if N>100) => only really useful for microcanonical statistical mechanics calculations.

1.1.0.0

The double sum in the equations of motion (eqns_of_motion.m) has been completely replaced by vector operations. This gives speed improvements of around O(6).

1.0.0.0