Generate Normally Distributed Latin Hyper Cube samples
N Points in an K dimensional Latin hypercube are to be selected. Each of the M coordinate dimensions is discretized to the values 1 through N. The points are to be chosen in such a way that no two points have any coordinate value in common. This is a standard Latin hypercube requirement, and there are many solutions.
This algorithm differs in that it tries to pick a solution which has the property that the points are "spread out" as evenly as possible. It does this by mapping the solution elements through the normal Gaussian cumulative distribution function
Example :
X = Generate_LHS('n', 100, 'k' , 2, 'plot_flag',1,'Normal_dist_flag',1,'hist_flag',1);
References:
M. Cavazzuti, Optimization Methods: From Theory to Design,
Springer- Verlag Berlin Heidelberg 2013
Inspired by:
http://www.mathworks.com/matlabcentral/fileexchange/48927-lhsdesigncon
引用格式
Chandramouli Gnanasambandham (2024). Generate Normally Distributed Latin Hyper Cube samples (https://www.mathworks.com/matlabcentral/fileexchange/49675-generate-normally-distributed-latin-hyper-cube-samples), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0.0 |