Q-R decomposition with positive diagonals of R Matrix
In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem, and is the basis for a particular eigen value algorithm, the QR algorithm. If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A. More specifically, the first k columns of Q form an orthonormal basis for the span of the first k columns of A for any 1 ≤ k ≤ n. The fact that any column k of A only depends on the first k columns of Q is responsible for the triangular form of R.
引用格式
Gnaneswar Nadh satapathi (2024). Q-R decomposition with positive diagonals of R Matrix (https://www.mathworks.com/matlabcentral/fileexchange/49807-q-r-decomposition-with-positive-diagonals-of-r-matrix), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
- MATLAB > Mathematics > Linear Algebra >
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!