MDP robot grid-world example

Applies value iteration to learn a policy for a robot in a grid world.
801.0 次下载
更新时间 2015/11/24

查看许可证

Applies value iteration to learn a policy for a Markov Decision Process (MDP) -- a robot in a grid world.
The world is freespaces (0) or obstacles (1). Each turn the robot can move in 8 directions, or stay in place. A reward function gives one freespace, the goal location, a high reward. All other freespaces have a small penalty, and obstacles have a large negative reward. Value iteration is used to learn an optimal 'policy', a function that assigns a
control input to every possible location.
video at https://youtu.be/gThGerajccM

This function compares a deterministic robot, one that always executes movements perfectly, with a stochastic robot, that has a small probability of moving +/-45degrees from the commanded move. The optimal policy for a stochastic robot avoids narrow passages and tries to move to the center of corridors.

From Chapter 14 in 'Probabilistic Robotics', ISBN-13: 978-0262201629, http://www.probabilistic-robotics.org

Aaron Becker, March 11, 2015

引用格式

Aaron T. Becker's Robot Swarm Lab (2024). MDP robot grid-world example (https://www.mathworks.com/matlabcentral/fileexchange/49992-mdp-robot-grid-world-example), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2014b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Robotics System Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0

added link to video https://youtu.be/gThGerajccM