zeroSR1
版本 1.0.0.0 (195.6 KB) 作者:
Stephen Becker
Very fast code for solving lasso and non-negative least-squares problems
Proximal gradient algorithm for convex optimization, using a diagonal +/- rank-1 norm. Uses special tricks to allow the use of a quasi-Newton methods.
引用格式
Stephen Becker (2026). zeroSR1 (https://github.com/stephenbeckr/zeroSR1), GitHub. 检索时间: .
MATLAB 版本兼容性
创建方式
R2011a
兼容任何版本
平台兼容性
Windows macOS Linux类别
在 Help Center 和 MATLAB Answers 中查找有关 Linear Least Squares 的更多信息
标签
致谢
参考作品: NNLS and constrained regression, predictor-corrector algorithm, nnls, active set algorithm, newton's algorithm for nnls, MTRON, LARS algorithm, LBFGSB (L-BFGS-B) mex wrapper, mex interface for bound constrained optimization via ASA, nnls - Non negative least squares, Simple MATLAB example code and generic function to perform LASSO
启发作品: mex interface for bound constrained optimization via ASA
algorithms
paperExperiments/Lasso
proxes
smoothFunctions
tests
utilities
无法下载基于 GitHub 默认分支的版本
| 版本 | 已发布 | 发行说明 | |
|---|---|---|---|
| 1.0.0.0 |
|
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。
