Dimensionality Reduction using Generalized Discriminant Analysis (GDA)

Generalized Discriminant Analysis - a non-linear feature dimensionality reduction technique
1.6K 次下载
更新时间 2016/4/8

GDA is one of dimensionality reduction techniques, which projects a data matrix from a high-dimensional space into a low-dimensional space by maximizing the ratio of between-class scatter to within-class scatter.

More details can be found in Section 4.3 of:

M. Haghighat, S. Zonouz, M. Abdel-Mottaleb, "CloudID: Trustworthy cloud-based and cross-enterprise biometric identification," Expert Systems with Applications, vol. 42, no. 21, pp. 7905-7916, 2015.
http://dx.doi.org/10.1016/j.eswa.2015.06.025

(C) Mohammad Haghighat, University of Miami
haghighat@ieee.org
PLEASE CITE THE ABOVE PAPER IF YOU USE THIS CODE.

引用格式

Mohammad Haghighat (2024). Dimensionality Reduction using Generalized Discriminant Analysis (GDA) (https://github.com/mhaghighat/gda), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2015a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库