Computer Vision for Student Competitions: Object Detection - Part 1

Object Detection - Part 1 (Chapter 5): Computer Vision Training for Student Competition Teams
1.5K 次下载
更新时间 2017/10/12

Learn to detect objects using binary classifiers; template matching, histogram of gradients (HOG), and cascade object detection.

You’ll learn how Template Matching works and how to use it. The concepts behind HOG will be taught to prepare you for the Cascade Object Detector. The Cascade Object Detector is a robust detector which provides the option to use Haar, Local Binary Patterns (LBP), and HOG to detect objects within an image.

Template Matching and Cascade Object Detection are used to detect objects in an image that are aspect ratio and orientation invariant. Template Matching has an additional limitation that the object must be scale invariant. Both methods are useful for determining if an object is located within an image, and if so, where the object is located within the image.

Using these methods, teams in the AUVSI Foundation competitions should be able to perform a variety target identification tasks.

Images from bike and non-bike folders were obtained from the object detection image database created by Dr. Axel Pinz from the Graz University of Technology. www.tugraz.at/en/institutes/emt/personal-pages/pinz/

引用格式

MathWorks Student Competitions Team (2024). Computer Vision for Student Competitions: Object Detection - Part 1 (https://github.com/mathworks/auvsi-cv-object-1), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2015a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Recognition, Object Detection, and Semantic Segmentation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
15.1.1.0

Documentation Updated
Description Updated
Adding files
Adding files

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库