Feature fusion using Canonical Correlation Analysis (CCA)

版本 1.0.1 (3.0 KB) 作者: Mohammad Haghighat
Feature level fusion using Canonical Correlation Analysis (CCA)
3.0K 次下载
更新时间 2020/1/31

Feature fusion is the process of combining two feature vectors to obtain a single feature vector, which is more discriminative than any of the input feature vectors.
CCAFUSE applies feature level fusion using a method based on Canonical Correlation Analysis (CCA). It gets the train and test data matrices from two modalities X and Y, and consolidates them into a single feature set Z.

Details can be found in:

M. Haghighat, M. Abdel-Mottaleb, W. Alhalabi, "Fully Automatic Face Normalization and Single Sample Face Recognition in Unconstrained Environments," Expert Systems With Applications, vol. 47, pp. 23-34, April 2016. http://dx.doi.org/10.1016/j.eswa.2015.10.047

(C) Mohammad Haghighat, University of Miami
haghighat@ieee.org
PLEASE CITE THE ABOVE PAPER IF YOU USE THIS CODE.

引用格式

Haghighat, Mohammad, et al. “Fully Automatic Face Normalization and Single Sample Face Recognition in Unconstrained Environments.” Expert Systems with Applications, vol. 47, Elsevier BV, Apr. 2016, pp. 23–34, doi:10.1016/j.eswa.2015.10.047.

查看更多格式
MATLAB 版本兼容性
创建方式 R2015b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.1

Updated the references

1.0.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库