Damping ratio estimation from ambient vibrations (SDOF)

版本 1.3 (187.9 KB) 作者: E. Cheynet
The modal damping ratio of a Single-Degree-of-Freedom (SDOF) System is estimated using ambient vibrations data
2.8K 次下载
更新时间 2020/5/14

Damping ratio estimation from ambient vibrations (SDOF)

View Damping ratio estimation from ambient vibrations (SDOF) on File Exchange Buy Me A Coffee

Summary

If the free-decay response (FDR) of a Single Degree-of-Freedom (SDOF) system is not directly available, it is possible to use ambient vibrations data yo estimate the modal damping ratio. Here, the Random Decrement Technique (RDT) [1], as well as the Natural Excitation Technique (NExT) [2], are used. First, the response of a SDOF to white noise is simulated in the time domain using [3]. Then the IRF is computed using the RDT or NExT. Finally, and an exponential decay is fitted to the envelop of the IRF to obtain the modal damping ratio.

Content

The present submission contains:

  • a function RDT.,m that implements to Random Decrement Technique (RDT)
  • a function NExT that implements the Natural Excitation Technique (NExT)
  • a function expoFit that determine the modal damping ratio by fitting an exponential decay to the envelope of the IRF.
  • a function CentDiff used to simulate the response to a white noise load of a SDOF in the time domain.
  • An example file Example.m

Any question, comment or suggestion is welcomed.

References

[1] Ibrahim, S. R. (1977). Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, 14(11), 696-700.

[2] James III, O. H., & Came, T. G. (1995). The natural excitation technique (next) for modal parameter extraction from operating structures.

[3] http://www.mathworks.com/matlabcentral/fileexchange/53854-harmonic-excitation-of-a-sdof

引用格式

Cheynet, E. Damping Ratio Estimation from Ambient Vibrations (SDOF). Zenodo, 2020, doi:10.5281/ZENODO.3827107.

查看更多格式
MATLAB 版本兼容性
创建方式 R2019b
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.3

See release notes for this release on GitHub: https://github.com/ECheynet/OMA_1SDOF/releases/tag/v1.3

1.2

Summary updated

1.1

Added project website

1.0.0.0

typo
typo
typo

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库