YAN-PRTools

版本 1.0.0.0 (4.6 MB) 作者: Ke Yan
Implementation and wrappers of ~40 common pattern recognition algorithms.
1.8K 次下载
更新时间 2016/4/26

Yet ANother pattern recognition toolbox.
>>Feature processing
zscore
PCA, KPCA
LDA

>>Classification
Logistic regression (LR), softmax
support vector machine (SVM)
random forest (RF)
K nearest neighbors (KNN)
Bayes, Mahalanobis distance
AdaBoost
tree
artificial neural networks (ANN)
extreme learning machine (ELM)

>>Regression
(Kernel) ridge regression
support vector regression (SVR)
least squares, robust fitting, quadratic fitting
lasso
partial least squares (PLS)
step-wise fit
random forest (RF)
artificial neural networks (ANN)
ELM

>>Feature selection
Correlation coefficients, Fisher ratio
minimum redundancy maximal relevance (mRMR)
single feature predictor
sequential forward selection (SFS)
genetic algorithm (GA)
random forest (RF)
step-wise fit
AdaBoost
SVM-RFE (original linear and kernel version)

>>Representative sample selection (active learning)
Cluster centers
transductive experimental design (TED)
locally linear reconstruction (LLR)
Kennard-Stone algorithm (KS)

* Unified and simple interface;
* Convenient to observe and change algorithm parameters
* Extensible. Simple file structures makes it easier to modify the algorithms.

***Interfaces***

>>Feature processing
[Xnew, model] = ftProc_xxx_tr(X,Y,param) % training
Xnew = ftProc_xxx_te(model,X) % test

>>Classification
model = classf_xxx_tr(X,Y,param) % training
[pred,prob] = classf_xxx_te(model,Xtest) % test, return the predicted labels and probabilities (optional)

>>Regression
model = regress_xxx_tr(X,Y,param) % training
rv = regress_xxx_te(model,Xtest) % test, return the predicted values

>>Feature selection
[ftRank,ftScore] = ftSel_xxx(ft,target,param) % return the feature rank (or subset) and scores (optional)

>>Representative sample selection (active learning)
smpList = smpSel_xxx(X,nSel,param) % return the indices of the selected samples

Please see test.m for sample usages.

Besides, there are three uniform wrappers: ftProc_, classf_, regress_. They accept algorithm name strings as inputs and combine the training and test phase.

Please find more details at http://yanke23.com/articles/research/2016/04/17/Yet-ANother-pattern-recognition-matlab-toolbox.html
or https://github.com/viggin/yan-prtools

引用格式

Ke Yan (2024). YAN-PRTools (https://github.com/viggin/yan-prtools), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2011a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Pattern Recognition and Classification 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

RandomForest-v0.02/RF_Class_C

RandomForest-v0.02/RF_Reg_C

actvTED_demo

libsvm-3.13/matlab

mRMR

mRMR/mi

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.0.0

revise intro
revise intro
update description
revise description

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库