Ahmed-ElTahan/Determinist​ic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-1st-Method

版本 1.0.0.0 (1.1 MB) 作者: Ahmed ElTahan
Application of Indirect Self-tuning Regulator Adaptive Control. Two degree controller, 1st Method.
220.0 次下载
更新时间 2016/7/8

It's intended to apply the self-tuning regulator for a given system
such as
y z^(-d) Bsys
Gp = ------ = ----------------------
u Asys
the controller is given in the form of

T S
u = ------ uc - ------ y = L1 - L2
R R

the closed loop transfer function
y z^(-d)BsysT z^(-d)BsysT z^(-d)BsysT
------ = ---------------------------------- = ------------------- = -------------------
uc AsysR + z^(-d)BsysS Am A0 alpha

where
-- y : output of the system
-- u : control action (input to the system)
-- uc : required output (closed loop input-reference, command signal)
-- err = error between the required and the output --> = uc - y
-- Asys = 1 + a_1 z^-1 + a_2 z^-1 + ... + a_na z^(-na)
-- Bsys = b_0 + b_1 z^-1 + b_2 z^-1 + ... + b_nb z^(-nb)
-- R = 1 + r_1 z^-1 + r_2 z^-1 + ... + r_nr z^(-nr) --> [1, r_1, r_2, r_3, ..., r_nr]
-- S = s_0 + s_1 z^-1 + s_2 z^-1 + ... + s_ns z^(-ns) --> [s_0, s_1, s _2, s_3, ..., s_ns]
-- T : another choice that to affect the close loop zeros and it's determined based
on several ways. Here use T = A0
-- d : delay in the system. Notice that this form of the Diaphontaing solution
is available for systems with d>=1
-- Am = required polynomial of the model = 1+m_1 z^-1 + m_2 z^-1 + ... + m_nm z^(-m_nm)
-- A0 = observer polynomail for compensation of the order = 1 + o_1 z^-1 + o_2 z^-1 + ... + o_no z^(-no)
-- alpha:required characteristic polynomial = Am A0 = 1 + alpha1 z^-1 + alpha2 z^-1 + ... + alpha_(nalpha z)^(-nalpha)

Steps of solution:
1- initialization of the some parameters (theta0, P, Asys, Bsys, S, R, T, y, u, err, dc_gain).
2- assume at first the controllers are unity. Get u, y of the system
3- RLS and get A, B estimated for the system.
4- Solve the Diophantine equation using A, B and the specified "alpha = AmA0" and get S, R of the controller.
5- choose T = A0
5- find "u" due to this new controller and then "y"

T S
u = ------ uc - ------ y
R R

6- repeat from 3 till the system converges.

Function Inputs and Outputs
Inputs
uc: command signal (column vector)
Asys = [1, a_1, a_2, a_3, ..., a_na] ----> size(1, na)
Bsys = [b_0, b_1, b _2, b_3, ..., a_nb]----> size(1, nb)
d : delay in the system (d>=1)
Ts : sample time (sec.)
Am = [1, m_1, m_2, m_3, ..., m_nm]---> size(1, nm)
A0 = [1, o_1, o_2, o_3, ..., o_no]---> size(1, no)

Outputs
Theta_final : final estimated parameters
Gz_estm : estimated pulse transfer function
Gc1: first controller S/R
Gc2: second controller T/R
Gcl = closed loop transfer function

Note: in order to acheive the dc gain which is the y_ss/uc_ss we may use
here T = T/dc_gain

引用格式

Ahmed ElTahan (2024). Ahmed-ElTahan/Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-1st-Method (https://github.com/Ahmed-ElTahan/Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-1st-Method), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2014a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Adaptive Control 的更多信息
社区

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库