POD-MOO.m

A MOO algorithm with Chebyshev decomposition and Proper Orthogonal Decomposition
460.0 次下载
更新 2016/8/16

查看许可证

A new Multi-Objective Optimization (MOO) algorithm with Chebyshev decomposition and Proper Orthogonal Decomposition (POD, also called Principal Components Analysis, PCA). The problem is reformulated into a set of Single-Objective Optimization (SOO) problems. New individuals are generated in the confidence ellipsoid spanned by the principle components. Magnitudes of the axes of the confidence ellipsoid are determined adaptively with an unbiased estimator. It takes around 20 iterations for the POD-MOOP algorithm to converge to the true Pareto front of the standard ZDT series test functions.
For more detailed information of the algorithm please visit the webpage https://sites.google.com/site/adloptimization/moo-with-principle-component-analysis.

引用格式

houliqiang2008 houliqiang2008 (2026). POD-MOO.m (https://ww2.mathworks.cn/matlabcentral/fileexchange/58737-pod-moo-m), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2014a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Multiobjective Optimization 的更多信息
版本 已发布 发行说明
1.0