The Newton-Raphson algorithm requires the evaluation of two functions (the function and its derivative) per each iteration. If they are complicated expressions it will take considerable amount of effort to do hand calculations or large amount of CPU time for machine calculations. Hence it is desirable to have a method that converges
clear all
clc
tol=0.01;
x0=1;
x1=2;
x=-3:0.1:3;
y=x.^3-3*x+1;
f=@(x)x^3-3*x+1;
plot(x,y)
grid on
z =secant(f,x0,x1,tol);
引用格式
N Narayan rao (2024). secant(f,x0,x1,tol) (https://www.mathworks.com/matlabcentral/fileexchange/58784-secant-f-x0-x1-tol), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2013a
兼容任何版本
平台兼容性
Windows macOS Linux类别
- Mathematics and Optimization > Optimization Toolbox > Systems of Nonlinear Equations > Newton-Raphson Method >
在 Help Center 和 MATLAB Answers 中查找有关 Newton-Raphson Method 的更多信息
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0.0 | none
|