Check out the help files on how to use the GUI.
Refer to the following paper for details on theory behind Principal Component Analysis for fault diagnosis: Detroja K. P., Gudi R. D., Patwardhan S. C. & Roy K. (2006), Fault Detection and Isolation using Correspondence Analysis, Ind. & Eng. Che. Res., 45(1), 223-235.
引用格式
Ketan D (2024). Principal Component Analysis (https://www.mathworks.com/matlabcentral/fileexchange/59268-principal-component-analysis), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2010a
兼容任何版本
平台兼容性
Windows macOS Linux类别
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
在 Help Center 和 MATLAB Answers 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息
标签
致谢
启发作品: EOF
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Req/
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0 |
|