Numerical Probability Density Function from Characteristic Function

版本 1.0.0.0 (748 字节) 作者: Giulio Francesca
Computes a numerical probability density function starting from a Characterstic function.
122.0 次下载
更新时间 2017/1/28

查看许可证

This function computes the numerical probability density function of the convolution of the Fourier Transforms of a standard mean reverting process without long term mean level and a mean reverting process presenting a jump rather than a diffusion. From such a numerical probability density function it is possible to estimate the parameter values running a standard maximum likelihood procedure. This machinery represents a good choice when modelling variables that present peaks in their distribution that fastly come back to their mean level.
The function takes as inputs the sample space, the initial values for the processes X and Y and the values of the parameters for the two considered processes. When one desires to estimate such parameters via maximum likelihood, just run the Matlab function mle, taking as input conv_pdf and the considered sample data.
Example:
x = -1:0.01:3;
init = [0 0];
param = [5 0.2 20 0.5 0.1 0.2]

引用格式

Giulio Francesca (2024). Numerical Probability Density Function from Characteristic Function (https://www.mathworks.com/matlabcentral/fileexchange/59896-numerical-probability-density-function-from-characteristic-function), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2015a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0

sample image inserted
References
Hambly, Ben, Sam Howison, and Tino Kluge. "Modelling spikes and pricing swing options in electricity markets." Quantitative Finance 9.8 (2009): 937-949.
.