solving ODE using numerical methods

版本 1.0.0.1 (1.8 KB) 作者: N Narayan rao
program to solve ODE using different numerical methods
315.0 次下载
更新时间 2019/10/16

查看许可证

A most general form of an ordinary differential equation (ode) is given by f( x, y, y', . . ., y(m) ) = 0
where x is the independent variable and y is a function of x. y', y'' . . . y(m) are respectively, first, second and mth derivatives of y with respect to x. ref: https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/intro.html
example :
program to solve 1st Order differential Equation using different numerical methods
comparing the results with ODE45 and to find max error for a user defined step size " h "
enter the function in form of @(x,y): @(x,y)cos(x)-log(y)
enter initial "x" value : 1
enter final "x" value : 3
enter initial "y" value : 1
enter "h" value : 0.1
maximum error ode45 vs Euler= 0.030403 with step size h= 0.1
maximum error ode45 vs RK-4= 1.3012e-06 with step size h= 0.1
maximum error ode45 vs Heuns(Rk-2)= 0.00095811 with step size h= 0.1
maximum error ode45 vs Midpoint= 0.0009912 with step size h= 0.1
maximum error ode45 vs Backward Eulers= 0.044459 with step size h= 0.1

引用格式

N Narayan rao (2024). solving ODE using numerical methods (https://www.mathworks.com/matlabcentral/fileexchange/60517-solving-ode-using-numerical-methods), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2013a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

版本 已发布 发行说明
1.0.0.1

nil

1.0.0.0

fig
none