RolandRitt/Matlab-genNoisyData
# Matlab-genNoisyData
function to generate a dataset with m realisations of a random d-dimensional variable with given covariance matrix
```Matlab
function dataM = genCovData(covM, m, y0)
% Keywords: covariance, random data, noisy data
%
% Purpose : generate a data set with m random data vectors with a
% exactly the predefined covariance matrix 'covM'; optional a
% datavector can be given to generate a noisy data set for. In
% this case the generated noise is added to y0
%
% Syntax : dataM = genCovData(covM, m)
% dataM = genCovData(covM, m, y0)
%
% Input Parameters :
% covM := covariancematrix of the output; a squared symmetric
% positiv semi-definit matrix; dimension d of the matrix is the
% dimension of the random data vector
%
% m := number of realisations of random data vector;
%
% y0 := a column vector of size [dx1]; to this vector, the
% generated noise with given covariance is added.
%
%
% Return Parameters :
% dataM := a matrix of size [dxm], where each column is a
% realisation of the random variable; the covariance (cov(dataM')
% is the given covM;
%
% Description :
% using code from:
% https://stats.stackexchange.com/questions/120179/generating-data-with-a-given-sample-covariance-matrix
% see also: mvnrnd
% Author :
% Roland Ritt
%
% History :
% \change{1.0}{29-Jun-2017}{Original}
%
% --------------------------------------------------
% (c) 2017, Roland Ritt
% Chair of Automation, University of Leoben, Austria
% email: automation@unileoben.ac.at
% url: automation.unileoben.ac.at
% --------------------------------------------------
```
引用格式
Roland (2024). RolandRitt/Matlab-genNoisyData (https://github.com/RolandRitt/Matlab-genNoisyData), GitHub. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!mCode
testCode
无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.1.0.0 | add optional input parameter y0 to generate a noisy data set for y0 |
|
|
1.0.0.0 |
|