System Identification Using LMS Algorithm and Huber Cost Function Minimization

版本 1.0.0.0 (2.2 MB) 作者: Sambit Behura
Modelling a FIR Filter using LMS Algorithm and, Huber's Cost Function for presence of outliers
116.0 次下载
更新时间 2018/2/15

查看许可证

Modelling a FIR Filter using LMS Algorithm and, Huber's Cost Function Minimization for presence of a certain percentage of outliers.
Here we have to identify and model a 3-tap FIR filter with weights [0.26 0.93 0.26].
This has to be done using:
1) Mean Square error minimization (LMS Algorithm)-
The reference signal is corrupted by additive white gaussian noise (mean=0, standard deviation=0.1)
2) Huber Loss Minimization (with 10 to 20 percent outlier added to the noise)
The reference signal is corrupted by additive white gaussian noise (mean=0, standard deviation=0.05)

引用格式

Sambit Behura (2026). System Identification Using LMS Algorithm and Huber Cost Function Minimization (https://ww2.mathworks.cn/matlabcentral/fileexchange/65901-system-identification-using-lms-algorithm-and-huber-cost-function-minimization), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2017a
兼容任何版本
平台兼容性
Windows macOS Linux
版本 已发布 发行说明
1.0.0.0

Problem Statement Updated

Problem Statement Updated