Visualizations of Kernel Principal Components Analysis

版本 2.0.0.0 (25.2 KB) 作者: Karl Ezra Pilario
Grayscale visualizations of the kernel space for toy 2D examples trained using KPCA
182.0 次下载
更新时间 2018/2/19

查看许可证

This code can aid in visualizing the kernel space for 2D data trained using Kernel Principal Components Analysis.

You can: (1) choose among 5 types of kernels (you can also add more), (2) input your own kernel parameters, and (3) choose among 5 toy 2D data sets to play with. The sample data sets include: (1) a face, (2) a spiral, (3) three clusters, (4), two moons, and (5) concentric circles. The output Figure 1 contains plots of: (1) raw data, (2) normalized data, (3) sorted eigenvalues, (4) 3D kernel projection of training and test data. Figure 2 contains grayscale visualizations of the top 9 (or less) eigenvalues from KPCA. You can rotate the plots in Fig. 2 so you can see the actual kernel surface. It is hoped that the user will gain insights to the effect of kernels and their parameters for KPCA on simple 2D data.

Reference: Scholkopf, Smola, Muller (1998). Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, 10, 1299–1319.

引用格式

Karl Ezra Pilario (2026). Visualizations of Kernel Principal Components Analysis (https://ww2.mathworks.cn/matlabcentral/fileexchange/66053-visualizations-of-kernel-principal-components-analysis), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2017a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
2.0.0.0

Modified the code to make grayscale visualizations, instead of contours.

1.0.0.0

Edited the description