bootmode

版本 1.1.0.0 (3.1 KB) 作者: Andrew Penn
Multimodality testing with the smooth bootstrap
34.0 次下载
更新时间 2019/4/22

查看许可证

% Function file: [H, P, h] = bootmode (x, m, B, kernel)
%
% This function tests whether the distribution underlying the univariate
% data in vector x has m modes. The method employs the smooth bootstrap
% as described [1].
%
% The parsimonious approach is to consider a successively increasing
% number of modes until the null hypothesis (H0) is accepted (i.e. H=0),
% where H0 corresponds to the number of modes being equal to m.
%
% x is the vector of data
%
% m is the number of modes for hypothesis testing
%
% B is the number of bootstrap replicates
%
% kernel can be 'Gaussian' (default) or 'Epanechnikov'
%
% H=0 indicates that the null hypothesis cannot be rejected at the 5%
% significance level. H=1 indicates that the null hypothesis can be
% rejected at the 5% level.
%
% P is the achieved significance level using the bootstrap test.
%
% h is the critical bandwidth (i.e. the smallest bandwidth achievable to
% obtain a kernel density estimate with m modes)
%
% Bibliography:
% [1] Efron and Tibshirani. Chapter 16 Hypothesis testing with the
% bootstrap in An introduction to the bootstrap (CRC Press, 1994)
%
% bootmode v1.1 (22/04/2019)
% Author: Andrew Charles Penn
% https://www.researchgate.net/profile/Andrew_Penn/

引用格式

Andrew Penn (2024). bootmode (https://www.mathworks.com/matlabcentral/fileexchange/66671-bootmode), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2007a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Hypothesis Tests 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.1.0.0

- Correction to example data set provided in comments
- Added option to use either a Gaussian or Epanechnikov kernel

1.0.0.0