spherical pendulum - lagrange mechanics - theoretical physics
The problem is a nice simple example which can be found in any textbook on Theoetical Mechanics.
The position of the pendulum is described by two generalized coordinates (in spherical polar coordinates) theta and phi (r is constant). Using Lagrange2 equation a system of two second order nonlinear ordinary differential equations arises, which first has to be linearized to a system of 4x now first order ODEs in order to then be solved numerically by one of the matlab buildin solvers.
Here are the lines of code i'm refering to:
y10 = [0.4*pi 0 0 1.5]; % Initial Conditions for [ theta theta' phi phi'] at time t=0
f = @(t,y)[y(2);(( y(4))^2).*sin(y(1)).*cos(y(1))-(g/R).*sin(y(1)) ; y(4);-2.*(cos(y(1)).*y(2).*y(4))./(sin(y(1)))];
[t,y] = ode45(f,tspann,y10); % call ODE45 solver
引用格式
Lucas Tassilo Scharbrodt (2024). spherical pendulum - lagrange mechanics - theoretical physics (https://www.mathworks.com/matlabcentral/fileexchange/67996-spherical-pendulum-lagrange-mechanics-theoretical-physics), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
- Sciences > Physics > General Physics >
- Engineering > Mechanical Engineering > Statics and Dynamics >
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!sphericalPendulum/
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0.0 | added a screenshot as cover |