Bead sliding on rotating rod - Lagrange Mechanics

solve and animate equations of motion
47.0 次下载
更新时间 2018/7/11

查看许可证

The position of the bead is given by two coordinates : phi and rho - angle and radius in polar coordinates.
The 2x 2nd order Equations of motion are derived with Lagrange2 formalism.
In order to be solved numerically by matlab buildin ODE solvers the equations have to be
linearized to 4x 1st order ODE's as follows:
w - angular frequency
y0=[0.01 0 0 w]; % [ r dr/dt phi dphi/dt ] initial conditions at t=0
tspan = [0 60];
f=@(t,y)[y(2);w^2 * y(1) ; y(4);0];
[t,y]=ode45(f,tspan,y0); % call ode45 solver
The .zip file contains a mp4-video of the animation.

引用格式

Lucas Tassilo Scharbrodt (2024). Bead sliding on rotating rod - Lagrange Mechanics (https://www.mathworks.com/matlabcentral/fileexchange/67999-bead-sliding-on-rotating-rod-lagrange-mechanics), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2017b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 General Physics 的更多信息
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0