Nonlinear System Identification using Spatio-Temporal RBF-NN

版本 1.1.2 (357.2 KB) 作者: Shujaat Khan
In this submission, I implemented RBF, Fractional RBF, and Spatio-Temporal RBF Neural Network for nonlinear system identification task
790.0 次下载
更新时间 2018/12/5

查看许可证

Herein, you will find three variants of radial basis function neural network (RBF-NN) for nonlinear system identification task. In particular, I implemented RBF with conventional and fractional gradient descent, and compared the performance with spatio-temporal RBF-NN.

* For citations see [cite as] section

引用格式

Shujaat Khan (2026). Nonlinear System Identification using Spatio-Temporal RBF-NN (https://ww2.mathworks.cn/matlabcentral/fileexchange/68415-nonlinear-system-identification-using-spatio-temporal-rbf-nn), MATLAB Central File Exchange. 检索时间: .

Khan, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.

查看更多格式

Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.

查看更多格式

Khan, Shujaat, et al. “Spatio-Temporal RBF Neural Networks.” 2018 3rd {IEEE} International Conference on Emerging Trends in Engineering, Sciences and Technology ({ICEEST}), {IEEE}, 2018

MATLAB 版本兼容性
创建方式 R2015a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Deep Learning Toolbox 的更多信息
版本 已发布 发行说明
1.1.2

- update citation information

1.1.1

- title change

1.1

- Comparison with conventional and fractional variant

1.0.2

- Simplification of code syntax

1.0.1

- Example added

1.0.0