Matlab code QCCE: Quality Constrained Co-saliency Estimation
Despite recent advances in the joint processing of images,
sometimes it may not be as effective as single image
processing for object discovery problems. In this paper, while
aiming for common object detection, we attempt to address
this problem by proposing a novel QCCE: Quality Constrained
Co-saliency Estimation method. The approach here is to iteratively
update the saliency maps through co-saliency estimation
depending upon quality scores, which indicate the degree of
separation of foreground and background likelihoods (the easier
the separation, the higher the quality of saliency map). In this
way, joint processing a by the quality
of saliency maps. Moreover, the proposed method can be applied
to both unsupervised and supervised scenarios, unlike other
methods which are particularly designed for one scenario only.
Experimental results demonstrate the superior performance of the
proposed method compared to the state-of-the-art methods.
引用格式
Koteswar Rao Jerripothula (2024). Matlab code QCCE: Quality Constrained Co-saliency Estimation (https://github.com/jkoteswarrao/QCCE-Quality-Constrained-Co-saliency-Estimation), GitHub. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.1 | updated title |
|
|
1.0.0 |
|