causal-decomposition-analysis

版本 1.0.0 (1.7 MB) 作者: Albert Yang
Causal decomposition analysis published in Nature Communications 2018;9:3378
556.0 次下载
更新时间 2022/4/17

Inference of causality in time series has been principally based on the prediction paradigm. Nonetheless, the predictive causality approach may underestimate the simultaneous and reciprocal nature of causal interactions observed in real-world phenomena. Here, we present a causal-decomposition approach that is not based on prediction, but based on the covariation of cause and effect: cause is that which put, the effect follows; and removed, the effect is removed. Using empirical mode decomposition, we show that causal interaction is encoded in instantaneous phase dependency at a specific time scale, and this phase dependency is diminished when the causal-related intrinsic component is removed from the effect. Furthermore, we demonstrate the generic applicability of our method to both stochastic and deterministic systems, and show the consistency of causal-decomposition method compared to existing methods, and finally uncover the key mode of causal interactions in both modelled and actual predator–prey systems.

引用格式

Albert Yang (2024). causal-decomposition-analysis (https://github.com/accyang/causal-decomposition-analysis), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2016a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Frequently-used Algorithms 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库