Image classification using data augmentation

版本 1.1.0 (3.5 MB) 作者: Oge Marques
A simple example of a four-class image classifier using a small dataset, with and without data augmentation.
1.6K 次下载
更新时间 2019/8/12

查看许可证

A simple example of a four-class image classifier using a small dataset (320 images of flowers: 80 sample x 4 categories) and a very simple CNN, with and without data augmentation.

The main goal of this example is to demonstrate the use of the MATLAB functionality for data augmentation in image classification solutions: the augmentedImageDatastore and the imageDataAugmenter.

This example should be easy to modify and expand to the user's needs.

Notes:
- The validation accuracy improves -- from ~79% (Part 1 in the code) to ~83% (Part 2) -- using a very simple CNN, as a result of data augmentation alone.
- Interestingly enough, using a pretrained AlexNet, the validation accuracy drops -- from 100% (Part 3) to ~98% (Part 4) -- which shows that data augmentation wouldn't be necessary in this case.

引用格式

Oge Marques (2026). Image classification using data augmentation (https://ww2.mathworks.cn/matlabcentral/fileexchange/68728-image-classification-using-data-augmentation), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2019a
兼容 R2017b 到 R2019a 的版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Deep Learning Toolbox 的更多信息
版本 已发布 发行说明
1.1.0

Added Parts 3 and 4 (using a pretrained AlexNet) and fixed a few bugs.

1.0.0