CNN deep network consist of inbuilt feature extraction (flattening) layer along with classification layers. By omitting the feature extraction layer (conv layer, Relu layer, pooling layer), we can give features such as GLCM, LBP, MFCC, etc directly to CNN just to classify alone. This can be acheived by building the CNN architecture using fully connected layers alone. This is helpful for classifying audio data.
http://cs231n.github.io/convolutional-networks/ visit this page for doubts regarding the architecture. I have used C->R->F->F->F architecture
引用格式
Selva (2024). CNN classifier using 1D, 2D and 3D feature vectors (https://www.mathworks.com/matlabcentral/fileexchange/68882-cnn-classifier-using-1d-2d-and-3d-feature-vectors), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
- Image Processing and Computer Vision > Computer Vision Toolbox > Recognition, Object Detection, and Semantic Segmentation > Object Detection >
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!