Empirical Approach to Machine Learning Software Package

版本 1.0.0 (820.9 KB) 作者: X.Gu&P.Angelov
This package contains the supplementary software for the book titled: Empirical Approach to Machine Learning.
201.0 次下载
更新时间 2018/10/5

查看许可证

This package contains the supplementary software for the book titled: Empirical Approach to Machine Learning.

This package is composed of:
1. AAD.m - Autonomous Anomaly Detection Algorithm
2. ADP.m - Autonomous Data Partitioning Algorithm
3. ALMMo0.m - Autonomous Learning Multi-Model System of Zero-Order
4. ALMMo1.m - Autonomous Learning Multi-Model System of First-Order
5. DRB.m - Deep Rule-Based System
6. SSDRB.m - Semi-Supervised Deep Rule-Based System
7. ASSDRB.m - Active Semi-Supervised Deep Rule-Based System
and a few datasets for demonstration.

The detailed instructions for the source codes can be found in:

P. Angelov, X. Gu, "Empirical Approach to Machine Learning," Springer, ISBN: 978-3-030-02383-6, 2018.

Please cite this software package using the above reference if it helps.

For any queries about the codes, please contact Prof. Plamen P. Angelov (p.angelov@lancaster.ac.uk) and Dr. Xiaowei Gu (x.gu3@lancaster.ac.uk)

Programmed by Xiaowei Gu

引用格式

X.Gu&P.Angelov (2024). Empirical Approach to Machine Learning Software Package (https://www.mathworks.com/matlabcentral/fileexchange/69012-empirical-approach-to-machine-learning-software-package), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2018b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Statistics and Machine Learning Toolbox 的更多信息
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

SupplementarySourceCodes

版本 已发布 发行说明
1.0.0