Matrix-Regularized Multiple Kernel Learning via (r,p) Norms.

版本 1.0.1 (1.5 MB) 作者: Yina Han
This code implements a matrix-regularized multiple kernel learning (MKL) technique based on a notion of (r, p) norms.
232.0 次下载
更新时间 2018/12/22

This code implements a matrix-regularized multiple kernel learning (MKL) technique based on a notion of (r, p) norms. This extends vector ℓ p-norm regularization and helps explore the dependences and interactions among kernels leading to better performance. We gave a simple alternating optimization with closed-form solution for the kernel weights and shown the global convergence of the proposed problem that can always be guaranteed. We analyzed such a regularizer using a Rademacher complexity bound, and we also proved that (r, p)-norm MKL yields strictly better generalization bounds than ℓ p-norm MKL. Finally, we reported the results of (r, p)-MKL on several publicly available data sets. (r, p)-MKL was shown to achieve consistently superior performances to canonical ℓ p-MKL, demonstrating the benefits of revealing the higher order kernel-pair relationships. Nevertheless, this project constitutes only a preliminary study and that a deeper analysis with more expressive formulation and efficient solving strategy should be further investigated.

Please cite the following papers if you find this work is useful:

Yina Han, Yixin Yang, Xuelong Li, Qingyu Liu, Yuanliang Ma, Matrix-Regularized Multiple Kernel Learning via (r,p) Norms[J]. IEEE Transactions on Neural Networks and Learning Systems. Volume: 29, Issue: 10, pp.4997 - 5007. 2018.

See MatrixMKL_main.m for more details.

引用格式

Yina Han (2026). Matrix-Regularized Multiple Kernel Learning via (r,p) Norms. (https://github.com/yinahan/Matrix-MKL), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2012a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Linear Algebra 的更多信息
标签 添加标签

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.1

Matrix-Regularized Multiple Kernel Learning via (r,p) Norms.

1.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库