Contractive autoencoders

版本 1.2.0 (44.5 KB) 作者: BERGHOUT Tarek
in these codes a set of functions created to fully train a Contractive Autoencoder.
348.0 次下载
更新时间 2019/4/18

查看许可证

Contractive autoencoder CAE adds an explicit regularizer in their objective function that forces the model to learn a function that is robust to slight variations of input values. This regularizer corresponds to the Frobenius norm of the Jacobian matrix of the encoder activations with respect to the input. The CAE in this code uses Extreme Learning Machine to minimize the following objective function:
RMSE((f(H+lamda*norm((Dx'.*HT'),'fro'))*Beta)-Targets)

(The parameters of the function are explained inside the code).
The uploaded file contains:
1- An ordinary AE which can be used for comparison.
2- Contractive AE function.
3- Jacobian matrix function downloaded from this link :
https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
4- Data normalization function.
To learn about the CAES you can start with this tutorial:
https://www.youtube.com/watch?v=79sYlJ8Cvlc&feature=youtu.be

引用格式

BERGHOUT Tarek (2024). Contractive autoencoders (https://www.mathworks.com/matlabcentral/fileexchange/71257-contractive-autoencoders), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2019a
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.2.0

some comments updated

1.1.0

the optimization equation is:B=pinv((H+lamda*norm((Dx'.*HT'),'fro'))') * X ;
and not H=radbas(H+lamda*norm((Dx'.*HT'),'fro'))'), am sorry ,it is corrected now .

1.0.0