Please cite the following reference in your future publications.
Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and xgboost. IEEE Access, 6, 21020-21031.
######################################################################
###Wind Turbine Fault Detection Using XGBoost, Random Forests and SVM###
######################################################################
Zhejiang Uniersity, Ocean Energy Lab, Insititute of Ocean Engineering and Technology
Yulin. Si
Mail:Yulinsi@zju.edu.cn
Liyang. Qian.
Mail:spectrum@zju.edu.cn
########################################################################
Directories:
.../FAST_V8/CertTest -- FAST input files (Read the FAST user's guide before use)
.../FAST_V8/Simulink/XGB_TreeModels -- XGBoost dump models
.../FAST_V8/Simulink/FaultDetection.mdl -- FD process simulink models (FAST V8 & MATLAB 2015b X86)
.../FAST_V8/Simulink/FDIBenchMarkData.m -- Simulation parameters setting
.../FAST_V8/Simulink/mat2data.m -- Transfer .mat data to .csv data
.../FAST_V8/Simulink/run.m -- Run the simulation (Note to set the path and name of .fst file)
.../Python/RF_XGBoost_Training.py -- Training and predicting with RF, XGBoost and SVM (Installed libraries first)
.../Python/Dump_XGBoost_Model.py -- Select features with RF and predict using XGBoost, classifier dumped as .txt file
########################################################################
How to observe the FD results:
1)Make sure how to run a FAST-Simulink combined model
2)Set parameters correctly and run 'run.m'
3)Results in scopes (FaultDetection/Fault Detection Subsystem/...)
########################################################################
How to save simulation data, train model and test model:
1)Make sure how to run a FAST-Simulink combined model
2)Set parameters correctly
3)Change one of the 'Terminator module' to 'To File' module. i.e. FaultDetection/Fault Detection Subsystem/claasification fault 2/Terminator2
4)Run 'run.m' and get a .mat file. Name it 'sensordata.mat'.
5)Run 'mat2data.m'. Transfer it to a CSV file. Prepare a training set and a testing set. Name them 'testdata.csv' and 'traindata.csv'
4)Run the 'RF_XGBoost_Training.py' in python 3.6. Note that you need install necessary py library in advance. They are sklearn, pylab, numpy, pandas, xgboost, scipy. 'Dump_XGBoost_Model.py' give a dump file of XGB and you can apply it in simulink model.
引用格式
Yulin Si (2024). Wind Turbine Fault Detection Using XGBoost & Random Forests (https://www.mathworks.com/matlabcentral/fileexchange/71395-wind-turbine-fault-detection-using-xgboost-random-forests), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!WindTurbineFaultDetection/FAST_V8/CertTest
WindTurbineFaultDetection/FAST_V8/Simulink
WindTurbineFaultDetection/FAST_V8/Simulink
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |