MATLAB-Kernel-PCA

版本 2.0.1 (59.8 KB) 作者: Masaki Kitayama
MATLAB Kernel PCA: PCA with training data , projection of new data
1.3K 次下载
更新时间 2021/11/30

KernelPca.m is a MATLAB class file that enables you to do the following three things with a very short code.
1.fitting a kernel pca model with training-data with the three kernel functions (gaussian, polynomial, linear) (demo.m)
2.projection of new data with the fitted pca model (demo.m)
3.confirming the contribution ratio (demo2.m)

See the github page for more detail.
https://github.com/kitayama1234/MATLAB-Kernel-PCA

[Example usage]
% There are a training dataset 'X' and testing dataset 'Xtest'

% train pca model with 'X'
kpca = KernelPca(X, 'gaussian', 'gamma', 2.5, 'AutoScale', true);

% project 'X' using the fitted model
projected_X = project(kpca, X, 2);

% project 'Xtest' using the fitted model
projected_Xtest = project(kpca, Xtest, 2);

引用格式

Masaki Kitayama (2025). MATLAB-Kernel-PCA (https://github.com/kitayama1234/MATLAB-Kernel-PCA), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2017a
兼容 R2019a 及更早的版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
2.0.1

edit description

2.0.0

add the propertie of contribution ratio

1.0.2

edit

1.0.1

edit

1.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库