Machine Learning Lithium-Ion Battery Capacity Estimation

版本 1.0.1.2 (762.6 KB) 作者: Wanbin Song
Machine learning based Lithium-Ion battery capacity estimation using multi-Channel charging Profiles
2.4K 次下载
更新时间 2020/1/7
In this script, I've implemented machine learning based Lithium-Ion battery capacity estimation using multi-Channel charging Profiles. Dataset used in this example is from "Battery data set" from NASA[1].
Basic implementation theory and approach is referenced by the recent published paper[2], and they proposed Multi-Channel charging profiles based machine learning and deep learning model for capacity estimation. Through this example, I will capture each approach described in paper.
[1] B. Saha and K. Goebel (2007). "Battery Data Set", NASA Ames Prognostics Data Repository (https://www.nasa.gov/intelligent-systems-division), NASA Ames Research Center, Moffett Field, CA
[2] Choi, Yohwan, et al. "Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles." IEEE Access 7 (2019): 75143-75152.

引用格式

Wanbin Song (2026). Machine Learning Lithium-Ion Battery Capacity Estimation (https://github.com/wanbin-song/BatteryMachineLearning), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2019b
与 R2019b 及更高版本兼容
平台兼容性
Windows macOS Linux

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.1.2

Updated broken link in the description.

1.0.1.1

Updated result image

1.0.1

Divide dataset into Train/Validation/Test set to avoid overfitting

1.0.0.1

Connected to GitHub

1.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库