Principal Component Analysis (PCA) on images in MATLAB (GUI)
版本 1.0.5 (12.2 MB) 作者:
ABHILASH SINGH
Principal Component Analysis (PCA) on images in MATLAB (GUI)
First, upload a colour image by clicking on the “upload an image button”. The acceptable image formats are png, jpg, jpeg, img and tif. Then click on the "Plot the grayscale image". After that enter the no. of PC's up to which you want to retrieve the images (both colour and grayscale).
An error message/box will pop-up when you enter a number greater than the no. of PCs for that particular image. Also, an error will message will pop-up when the entered input is not a number.
Please go through this link for detail explanation;
For a detail understanding of PCA, please refer my lecture on PCA;
https://www.youtube.com/watch?v=ZLpQ6cbHxmY
Enjoy!!!
引用格式
ABHILASH SINGH (2024). Principal Component Analysis (PCA) on images in MATLAB (GUI) (https://github.com/abhilash12iec002/Principal-Component-Analysis-PCA-on-images-in-MATLAB-GUI-), GitHub. 检索时间: .
MATLAB 版本兼容性
创建方式
R2019b
兼容任何版本
平台兼容性
Windows macOS Linux类别
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
在 Help Center 和 MATLAB Answers 中查找有关 Dimensionality Reduction and Feature Extraction 的更多信息
标签
致谢
参考作品: Real Time Object Detection using Deep Learning.
启发作品: Principal Component Analysis (PCA) on LANDSAT-8 imagery, Linear Regression plot with Confidence Intervals in MATLAB, Verifying convolution theorem in image processing (2-D)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.5 | Added video link. |
|
|
1.0.4 | Link update |
|
|
1.0.3 |
|
||
1.0.2 | GitHub upload |
|
|
1.0.1 | Increases the no. of acceptable image format. |
||
1.0.0 |
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库。