Iterative Eigenvalue Estimation using Cholesky Decomposition

The package presents a low-complexity algorithm for iterative eigenvalue estimation using Cholesky decomposition with permutations.
61.0 次下载
更新 2019/11/5

查看许可证

Iterative Eigenvalue Estimation using Cholesky Decomposition with Permutation

The proposed algorithm achieves a moderate convergence performance, comparable to the classical QR iterations (with permutations) [1], at a lower computational cost. It uses a combination of the low-complexity (N^3/6 per step) Cholesky iterations [2] together with matrix permutation based on the diagonal values. The algorithm works for positive definite matrices and can be extended to work on positive-semi definite, symmetric, and arbitrary matrices using methods described in [1] and [2].

References:
[1] Symmetric QR Algorithm with Permutations, arXiv:1402.5086.
[2] Singular Values using Cholesky Decomposition, arXiv:1202.1490.

Package: This package demonstrates the proposed algorithm.
Run instructions: Run test_choliter.m
Example output: test_choliter.fig or test_choliter.png

引用格式

Aravindh Krishnamoorthy (2026). Iterative Eigenvalue Estimation using Cholesky Decomposition (https://ww2.mathworks.cn/matlabcentral/fileexchange/73255-iterative-eigenvalue-estimation-using-cholesky-decomposition), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2019b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Eigenvalues & Eigenvectors 的更多信息
标签 添加标签
版本 已发布 发行说明
1.0.0