Fire Detection for CCTV surveillance system using YOLOv2

版本 1.0.0.1 (14.9 MB) 作者: Wanbin Song
Fire Detection for CCTV surveillance system using YOLOv2
820.0 次下载
更新时间 2019/11/26

Demo for CCTV surveillance system using Deep Learning, typically YOLOv2 network training demo.

Key Objective for this demo
- Applying deep learning to Video streams from CCTV
- YOLOv2 deep learning model implemented to detect fire from video stream

Demo development Workflow
- Large dataset access : imagedatastore
- Labeling data : Automatic fire labeling class for image labeler defined using image processing apps, e.g. color thresholder, image segmenter
- Training : YOLOv2 training using feature extraction layers + yolov2 layers
- Deployment : Inference speed acceleration by generating CUDA mex file for real-time prediction

Dataset Used
- Cazzolato, Mirela T., et al. "FiSmo: A Compilation of Datasets from Emergency Situations for Fire and Smoke Analysis." Proceedings of the satellite events (2017).
Copyright 2019 The MathWorks, Inc.

引用格式

Wanbin Song (2024). Fire Detection for CCTV surveillance system using YOLOv2 (https://github.com/wanbin-song/FireDetectionYOLOv2), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2019a
与 R2019a 及更高版本兼容
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

无法下载基于 GitHub 默认分支的版本

版本 已发布 发行说明
1.0.0.1

Connected to Github

1.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库