Recursive computation of the Rado-function. Mainly following: Heiner Marxen, Jürgen Buntrock: Attacking the Busy Beaver 5. In: Bulletin of the EATCS. 40, Februar 1990, ISSN 0252-9742, S. 247–251.
if the database toolbox is not available, simply comment out all related code lines.
rado(noStates, noLetters, tape_length, outputmin)
noStates = number of possible states of touring machine
noLetters = number of letters used by touring machine
tape_length is maximal length of tape
outputmin is the min number of ones from which on a touring machine is considered 'interesting'. Touring machines with smaller numbers of written ones are ignored in the result list.
examples about how to use:
>> rado(2,2,200,4)
terminated : [1 0 2 1 -1;2 0 1 1 1;1 1 2 1 1;2 1 Inf 1 -1] , sigma = 4 , n = 6
Elapsed time is 0.264846 seconds.
>> rado(2,2,200,3)
terminated : [1 0 2 1 -1;2 0 1 1 1;1 1 1 1 1;2 1 Inf 1 -1] , sigma = 3 , n = 5
terminated : [1 0 2 1 -1;2 0 1 1 1;1 1 2 0 1;2 1 Inf 1 -1] , sigma = 3 , n = 6
terminated : [1 0 2 1 -1;2 0 1 1 1;1 1 2 1 1;2 1 Inf 1 -1] , sigma = 4 , n = 6
terminated : [1 0 2 1 -1;2 0 2 1 1;1 1 Inf 1 -1;2 1 1 1 1] , sigma = 3 , n = 6
Elapsed time is 0.088483 seconds.
>> rado(3,2,200,8)
Elapsed time is 3.009735 seconds.
>> rado(2,3,200,8)
terminated : [1 0 2 1 -1;2 0 1 2 1;1 1 2 0 1;2 1 2 1 -1;1 2 Inf 1 -1;2 2 1 1 -1] , sigma = 8 , n = 29
terminated : [1 0 2 1 -1;2 0 1 2 1;1 1 2 2 1;2 1 2 2 -1;1 2 Inf 1 -1;2 2 2 1 1] , sigma = 9 , n = 38
Elapsed time is 2.358087 seconds.
>> rado(4,2,200,10)
terminated : [1 0 2 1 -1;2 0 1 1 1;3 0 Inf 1 -1;4 0 4 1 -1;1 1 2 1 1;2 1 3 0 1;3 1 4 1 1;4 1 1 0 -1] , sigma = 13 , n = 107
terminated : [1 0 2 1 -1;2 0 1 1 1;3 0 Inf 1 -1;4 0 4 1 1;1 1 3 0 -1;2 1 1 1 -1;3 1 4 1 -1;4 1 2 0 1] , sigma = 13 , n = 96
terminated : [1 0 2 1 -1;2 0 1 1 1;3 0 2 1 1;4 0 Inf 1 -1;1 1 3 0 1;2 1 4 1 -1;3 1 2 1 -1;4 1 3 1 -1] , sigma = 10 , n = 40
terminated : [1 0 2 1 -1;2 0 3 0 -1;3 0 3 1 1;4 0 2 0 -1;1 1 Inf 1 -1;2 1 4 0 -1;3 1 4 1 1;4 1 1 1 1] , sigma = 10 , n = 47
terminated : [1 0 2 1 -1;2 0 3 0 -1;3 0 4 1 -1;4 0 1 1 1;1 1 4 1 1;2 1 2 1 -1;3 1 Inf 1 -1;4 1 4 0 1] , sigma = 10 , n = 40
terminated : [1 0 2 1 -1;2 0 3 1 -1;3 0 1 1 1;4 0 3 1 -1;1 1 4 1 1;2 1 Inf 1 -1;3 1 1 0 -1;4 1 4 0 1] , sigma = 11 , n = 59
terminated : [1 0 2 1 -1;2 0 3 1 -1;3 0 2 1 1;4 0 Inf 1 -1;1 1 1 0 1;2 1 2 1 1;3 1 4 1 -1;4 1 1 0 -1] , sigma = 12 , n = 63
terminated : [1 0 2 1 -1;2 0 3 1 -1;3 0 4 1 1;4 0 2 1 1;1 1 1 0 1;2 1 Inf 1 -1;3 1 1 0 -1;4 1 4 1 1] , sigma = 11 , n = 43
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 Inf 1 -1;4 0 3 1 1;1 1 4 1 1;2 1 3 0 -1;3 1 1 1 -1;4 1 1 1 1] , sigma = 10 , n = 51
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 4 1 -1;4 0 Inf 1 -1;1 1 2 0 1;2 1 1 1 1;3 1 1 1 1;4 1 3 1 -1] , sigma = 10 , n = 30
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 4 1 1;4 0 Inf 1 -1;1 1 3 1 1;2 1 4 0 -1;3 1 1 1 1;4 1 1 1 -1] , sigma = 10 , n = 45
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 1 1 -1;4 0 Inf 1 -1;1 1 2 1 1;2 1 4 1 -1;3 1 1 1 1;4 1 3 0 -1] , sigma = 12 , n = 53
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 1 0 -1;4 0 3 1 -1;1 1 3 1 -1;2 1 4 0 1;3 1 2 1 1;4 1 Inf 1 -1] , sigma = 10 , n = 63
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 1 1 -1;4 0 Inf 1 -1;1 1 4 0 -1;2 1 1 0 1;3 1 2 1 1;4 1 3 0 -1] , sigma = 12 , n = 78
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 4 1 -1;4 0 1 0 -1;1 1 Inf 1 -1;2 1 2 0 1;3 1 2 1 1;4 1 4 1 -1] , sigma = 10 , n = 32
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 4 0 1;4 0 1 1 1;1 1 4 0 -1;2 1 1 1 -1;3 1 3 1 1;4 1 Inf 1 -1] , sigma = 10 , n = 30
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 3 0 -1;4 0 4 1 -1;1 1 Inf 1 -1;2 1 1 1 -1;3 1 4 0 1;4 1 2 0 1] , sigma = 10 , n = 68
terminated : [1 0 2 1 -1;2 0 3 1 1;3 0 1 1 -1;4 0 1 1 -1;1 1 3 0 -1;2 1 Inf 1 -1;3 1 4 1 1;4 1 2 1 1] , sigma = 11 , n = 46
Elapsed time is 522.186494 seconds.
I used: David Fass (2020). CARTPROD: Cartesian product of multiple sets (https://www.mathworks.com/matlabcentral/fileexchange/5475-cartprod-cartesian-product-of-multiple-sets), MATLAB Central File Exchange. Retrieved January 26, 2020.
and a modification of: Daniel Drucker (2020). Turing machine emulator (https://www.mathworks.com/matlabcentral/fileexchange/23006-turing-machine-emulator), MATLAB Central File Exchange. Retrieved January 26, 2020.
引用格式
Thomas (2024). Computation of Rado-function (https://www.mathworks.com/matlabcentral/fileexchange/74030-computation-of-rado-function), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!