Dense disparity map with kmeans and median filter
median filter and k-means for dense disparity map estimation MATLAB functions to fill a sparse disparity map, in consequence, creating a dense disparity map. DEMO.m contains three examples with Tsukuba, Middlebury, and KITTI stereo datasets.
As input, the sparse disparity map must have NaN labels for occluded values, the reference RGB image and a minimum window size to perform the filtering. First the RGB reference image is color segmented from CIELab colorspace' 'a' and 'b' channels, then the median filtering stage is performed iteratively, beginning with a minimum window size, and then increasing its dimensions until there isn't NaN values or there isn't a value change between iterations
MEX functions were done with Armadillo linear algebra library, libgomp.dll is required to perform parallel processing
Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, Vol. 1, pp. 26, 2016.
引用格式
Victor Gonzalez (2024). Dense disparity map with kmeans and median filter (https://github.com/alx3416/Dense-disparity-map-with-kmeans-and-median-filter), GitHub. 检索时间: .
Gonzalez-Huitron, Victor, et al. “Parallel Framework for Dense Disparity Map Estimation Using Hamming Distance.” Signal, Image and Video Processing, vol. 12, no. 2, Springer Science and Business Media LLC, Aug. 2017, pp. 231–38, doi:10.1007/s11760-017-1150-3.
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |
|