ApproximantCoeffici​entsSEIR

版本 1.0.1 (2.2 KB) 作者: Nathaniel Barlow
Computes coefficients needed for an analytic solution to the SEIR epidemic model.
29.0 次下载
更新时间 2020/6/27

查看许可证

%This computes the A_n coefficients, B_n coefficients, lambda_1, and f_infinity needed for the N-term SEIR approximant
%given as equation (15) in the preprint found at https://www.researchgate.net/publication/342211425_Analytic_solution_of_the_SEIR_epidemic_model_via_asymptotic_approximant
%The inputs correspond to the number of terms N (must be even), SEIR parameters, and initial conditions as
%specified in equation (1) in the preprint. The code uses padeapprox.m [1], which implements the algorithm of [2].
%
%[1] https://github.com/chebfun/chebfun/blob/master/padeapprox.m
%[2] P. Gonnet, S. Guettel, and L. N. Trefethen, "ROBUST PADE APPROXIMATION
% VIA SVD", SIAM Rev., 55:101-117, 2013.

% %%% example, reproducing figure 1b in Weinstein et. al.
% alpha=0.466089; beta=0.2; gamma=0.1; I0=0.05; S0=0.88; E0=0.07; R0=0; %input parameters
% t=0:0.1:100 %time interval 0 to 100 in increments of 0.1
% N=18; %number of terms in the approximant, increase until answer stops changing
% [A0,A,B,lambda_1,f_infinity]=ApproximantCoefficientsSEIR(N,alpha,beta,gamma,S0,E0,I0); %using the code provided to get the stuff needed below
% tv=t;clear t; syms t;
% f1=A0; f2=1;
% for j=1:N/2
% f1=f1+A(j)*t.^j;
% f2=f2+B(j)*t.^j;
% end
% FA=f_infinity+exp(lambda_1*t).*(f1./f2);
% dFA=diff(FA,t); t=tv; FA=eval(FA); dFA=eval(dFA);
% SA=exp(FA);
% IA=-1/beta*dFA;
% RA=R0-gamma/beta*(FA-log(S0));
% EA=gamma/beta*(FA-log(S0))-SA+dFA/beta+E0+I0+S0;
% plot(tv,SA,'r','displayname','S');hold on
% plot(tv,EA,'m','displayname','E')
% plot(tv,IA,'c','displayname','I')
% plot(tv,RA,'b','displayname','R'); legend show

引用格式

Nathaniel Barlow (2024). ApproximantCoefficientsSEIR (https://www.mathworks.com/matlabcentral/fileexchange/77007-approximantcoefficientsseir), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2020a
兼容任何版本
平台兼容性
Windows macOS Linux
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.1

A few things made more efficient and includes an example test-case in the comments.

1.0.0