ami and correlation
AMI computes and plots average mutual information (ami) and correlation of univariate or bivariate time series for different values of time lag.
USAGE:
[amis corrs] = ami(xy,nBins,nLags)
INPUT:
xy: either univariate (x) or bivariate ([x y]) time series data. If bivariate time series are given then x should be independent variable and y should be dependent variable. If univariate time series is given then autocorrelation is calculated instead of cross correlation.
nBins: number of bins for time series data to compute distribution which is required to compute ami. nBins should be either vector of 2 elements (for bivariate) or scalar (univariate).
nLags: number of time lags to compute ami and correlation. Computation is done for lags values of 0:nLags.
OUTPUT:
amis: vector of average mutual information for time lags of 0:nLags
corrs: vector of correlation (or autocorrelation for univariate time seris) for time lags of 0:nLags
EXAMPLES:
xy = rand(1000,2);
nBins = [15 10];
nLags = 25;
[amis corrs]= ami(xy,nBins,nLags);
引用格式
Durga Lal Shrestha (2024). ami and correlation (https://www.mathworks.com/matlabcentral/fileexchange/7936-ami-and-correlation), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0.0 | Updating description with spelling correction
|