SKEEL(A) estimates Skeel's condition number, NORM(ABS(INV(A))*ABS(A), INF), without computing ABS(INV(A))*ABS(A). SKEEL(A) is always less than or equal to COND(A, INF). In practice, SKEEL(A) can be much less than COND(A, INF). SKEEL(A) is invariant to row scaling.
SKEEL(A, P) directly computes Skeel's condition number in the P-norm: NORM(ABS(INV(A))*ABS(A), P).
Example:
A = [1 0; 0 1e9];
cond(A) % = 1e9
skeel(A) % = 1
References:
[1] Robert D. Skeel, "Scaling for numerical stability in Gaussian elimination", J. ACM, 26 (1979), pp. 494-526.
[2] N.J. Higham, "FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation", ACM Trans. Math. Soft., 14 (1988), pp. 381-396.
引用格式
Daniel Fortunato (2024). skeel (https://github.com/danfortunato/skeel), GitHub. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!无法下载基于 GitHub 默认分支的版本
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.1 | Update description |
|
|
1.0.0 |
|