Cascade Power Generation Cycle Optimization

Single-Objective Genetic Algorithm (GA) Multi-Objective Genetic Algorithm (NSGA II)
257.0 次下载
更新时间 2021/2/13

The overall efficiency and fuel usage of the whole system (objectives) are affected by extractions pressures (opt.vars). The thermodynamic states had been extracted by CoolProp toolbox in MATLAB.

First we had to specify the pressures in the way that maximizes the efficiency and then minimizes the fuel usage. This process is a single-objective optimization. After that, we had to optimize both objectives at the same time, which is a multi-objective optimization. For this process, we used NSGA (II) in MATLAB. The obtained Pareto front has been reported as the result.

P.S.: NSGA (II) is Non-dominated Sorting Genetic Algorithm (version 2) which is an evolutionary method. (Meta Heuristic)

引用格式

Mohammad Daneshian (2024). Cascade Power Generation Cycle Optimization (https://github.com/thegreatmd4/Cascade_Power_Generation_Cycle_Optimization/releases/tag/1.0.0.0), GitHub. 检索时间: .

MATLAB 版本兼容性
创建方式 R2019b
兼容任何版本
平台兼容性
Windows macOS Linux
标签 添加标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

MultiObjective

MultiObjective/+CoolProp

SingleObjective

SingleObjective/+CoolProp

版本 已发布 发行说明
1.0.0.0

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库