Pre-trained 3D LeNet-5
Our implementation of 2D LeNet-5 model achieved 98.48% accuracy on the grey-scale MNIST test set after training on its train set. To transfer the learnable parameters from pre-trained 2D LeNet-5 (MNIST) to 3D one, we duplicated 2D filters (copying them repeatedly) through the third dimension. This is possible since a video or a 3D image can be converted into a sequence of image slices. In the training process, we expect that the 3D LeNet-5 learns patterns in each frame. This model has about 260,000 learnable parameters.
simply, call "lenet5TL3Dfun()" function.
引用格式
Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.1 | The relevant paper is published. |
|
|
1.0.0 |
|