Ostrogradsky's Method

版本 1.0.3 (2.0 KB) 作者: Ryan Black
Function decomposes a proper rational fraction integrand via Ostrogradsky's method.
8.0 次下载
更新时间 2021/2/18

查看许可证

Syntax:

[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)

Description:

For an integral with an integrand that is a proper rational fraction, Ostrogradsky's decomposes the integral as

$\int \frac{P(x)}{Q(x)} \, dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} \, dx. \tag*{} $

The inputs to ostrogradskysmethod are symbolic polynomials P and Q, with P being lesser degree than Q. The outputs are symbolic polynomials P_1, Q_1, P_2, and Q_2.

Examples:

Use Ostrogradsky's method to decompose an integral with P(x) = x^3-x^2+x+1 and Q(x) = (x^2+1)^3

syms x
P = x^3-x^2+x+1;
Q = (x^2+1)^3;
[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)

P_1 =
x^3/4 - x^2/2 + (3*x)/4 - 1/2
Q_1 =
(x^2 + 1)^2
P_2 =
1/4
Q_2 =
x^2 + 1

Take the integral via Ostrogradsky's method and confirm that it matches MATLAB's solution

I = P_1/Q_1+int(P_2/Q_2)
I_c = int(P/Q)

I =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2
I_c =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2

引用格式

Ryan Black (2024). Ostrogradsky's Method (https://www.mathworks.com/matlabcentral/fileexchange/87497-ostrogradsky-s-method), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2018b
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.3

edit description

1.0.2

added example

1.0.1

edit description

1.0.0