Character recognition using LeNet-5

版本 1.0.1 (370.1 KB) 作者: Amir Ebrahimi
A deep model (LeNet-5) trained on the MNIST dataset is used for character recognition.
626.0 次下载
更新时间 2021/5/6

查看许可证

The LeNet-5 model implemented in this project has 3 convolutional layers and 2 fully-connected layers. It has 62,000 training parameters, and the image input size is 32*32. This model achieved 98.48% accuracy on the MNIST test set after training on its train set. MNIST is a dataset of handwritten digits with 70,000 centred fixed-size grey-scale images. More details about the dataset are available in:

http://yann.lecun.com/exdb/mnist

Run the GUI and select your image.

引用格式

Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.

查看更多格式
MATLAB 版本兼容性
创建方式 R2020b
与 R2019b 及更高版本兼容
平台兼容性
Windows macOS Linux
致谢

参考作品: Pre-trained 2D LeNet-5

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.1

The relevant paper is published.

1.0.0