Principal Component Analysis (PCA) on LANDSAT-8 imagery
版本 1.0.0 (13.4 MB) 作者:
ABHILASH SINGH
Applying PCA on the composite LANDSAT-8 satellite imagery.
Step's that we have followed;
1. Create a composite of bands. In our case, we have created a
composite of 11 bands of LANDSAT-8 images (Dated: 26-12-2020).
2. Convert each band into a column vector.
We will get an array of size n x p. Where p=11 in our case.
3. Standardise the data and apply PCA.
4. Reconstruct the original data.
引用格式
ABHILASH SINGH (2024). Principal Component Analysis (PCA) on LANDSAT-8 imagery (https://www.mathworks.com/matlabcentral/fileexchange/88582-principal-component-analysis-pca-on-landsat-8-imagery), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
创建方式
R2020b
兼容任何版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!PCA on LANDSAT8 imagery
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0 |